弱监督(WS)是一种有力的方法,可以构建标记的数据集,面对几乎没有标记的数据,用于培训监督模型。它用标签函数(LFS)表达的多个嘈杂但廉价标签的估计取代了手持标签数据。尽管它已成功地用于许多域中,但弱监督的应用程序范围受到构造具有复杂或高维特征的域的标记功能的困难。为了解决这个问题,少数方法提出了使用一小部分地面真实标签自动化LF设计过程的方法。在这项工作中,我们介绍了aettos-bench-101:在挑战WS设置中评估自动化WS(autows)技术的框架 - 以前难以或不可能应用传统的WS技术是一组不同的应用程序域。虽然AtoW是扩展WS应用程序范围的有希望的方向,但诸如零击基础模型之类的强大方法的出现揭示了需要了解介绍技术如何与现代零射击或几次学习者进行比较或合作。这为autows-bench-101的中心问题提供了信息:给定每个任务的初始集100个标签,我们询问从业者是否应使用autows方法生成其他标签或使用一些简单的基线,例如来自基础模型或监督学习。我们观察到,在许多情况下,如果启动方法要超越基础模型的信号,则有必要超越简单的几个基线,而autows bench-101可以促进该方向的未来研究。我们以详尽的介绍方法进行彻底消融研究。
translated by 谷歌翻译
最近,语音表示学习改善了许多与语音有关的任务,例如语音识别,语音分类和语音到文本翻译。但是,以上所有任务都朝着语音理解的方向发展,但是对于反向方向,言语综合,由于产生高质量语音的挑战性质,代表性学习的潜力尚未实现。为了解决这个问题,我们提出了我们的框架,对准的声音文本预处理($^3 $ t),该框架在培训期间重建了带有文本输入和声学文本对齐的蒙面声信号。通过这种方式,预处理的模型可以生成高质量的重建频谱图,可以直接应用于语音编辑和看不见的扬声器tts。实验显示了$^3 $ t在语音编辑上的SOTA模型,并在没有外部说话者验证模型的情况下改善了多扬声器语音综合。
translated by 谷歌翻译
培训广泛和深度神经网络(DNN)需要大量的存储资源,例如内存,因为在转发传播期间必须在存储器中保存中间激活数据,然后恢复以便向后传播。然而,由于硬件设计约束,诸如GPU之类的最先进的加速器(例如GPU)仅配备了非常有限的存储容量,这显着限制了在训练大规模DNN时的最大批量大小和性能加速。传统的记忆保存技术均受性能开销或受限互连带宽或特定互连技术的约束。在本文中,我们提出了一种新颖的记忆高效的CNN训练框架(称为Comet),利用错误界限的损耗压缩来显着降低训练的内存要求,以允许培训更大的模型或加速培训。不同于采用基于图像的有损压缩机(例如JPEG)的最先进的解决方案来压缩激活数据,我们的框架故意采用严格的错误控制机制来采用错误界限的损耗压缩。具体而言,我们对从改变的激活数据传播到梯度的压缩误差传播的理论分析,并经验探讨改变梯度对训练过程的影响。基于这些分析,我们优化了误报的损耗压缩,并提出了一种用于激活数据压缩的自适应误差控制方案。我们评估我们对最先进的解决方案的设计,其中包含五个广泛采用的CNN和Imagenet DataSet。实验表明,我们所提出的框架可以在基线训练中显着降低13.5倍,并分别在另一个最先进的基于压缩框架上的1.8倍,几乎没有准确性损失。
translated by 谷歌翻译
To reduce the significant redundancy in deep Convolutional Neural Networks (CNNs), most existing methods prune neurons by only considering statistics of an individual layer or two consecutive layers (e.g., prune one layer to minimize the reconstruction error of the next layer), ignoring the effect of error propagation in deep networks. In contrast, we argue that it is essential to prune neurons in the entire neuron network jointly based on a unified goal: minimizing the reconstruction error of important responses in the "final response layer" (FRL), which is the secondto-last layer before classification, for a pruned network to retrain its predictive power. Specifically, we apply feature ranking techniques to measure the importance of each neuron in the FRL, and formulate network pruning as a binary integer optimization problem and derive a closed-form solution to it for pruning neurons in earlier layers. Based on our theoretical analysis, we propose the Neuron Importance Score Propagation (NISP) algorithm to propagate the importance scores of final responses to every neuron in the network. The CNN is pruned by removing neurons with least importance, and then fine-tuned to retain its predictive power. NISP is evaluated on several datasets with multiple CNN models and demonstrated to achieve significant acceleration and compression with negligible accuracy loss.
translated by 谷歌翻译
Reliable and automated 3D plant shoot segmentation is a core prerequisite for the extraction of plant phenotypic traits at the organ level. Combining deep learning and point clouds can provide effective ways to address the challenge. However, fully supervised deep learning methods require datasets to be point-wise annotated, which is extremely expensive and time-consuming. In our work, we proposed a novel weakly supervised framework, Eff-3DPSeg, for 3D plant shoot segmentation. First, high-resolution point clouds of soybean were reconstructed using a low-cost photogrammetry system, and the Meshlab-based Plant Annotator was developed for plant point cloud annotation. Second, a weakly-supervised deep learning method was proposed for plant organ segmentation. The method contained: (1) Pretraining a self-supervised network using Viewpoint Bottleneck loss to learn meaningful intrinsic structure representation from the raw point clouds; (2) Fine-tuning the pre-trained model with about only 0.5% points being annotated to implement plant organ segmentation. After, three phenotypic traits (stem diameter, leaf width, and leaf length) were extracted. To test the generality of the proposed method, the public dataset Pheno4D was included in this study. Experimental results showed that the weakly-supervised network obtained similar segmentation performance compared with the fully-supervised setting. Our method achieved 95.1%, 96.6%, 95.8% and 92.2% in the Precision, Recall, F1-score, and mIoU for stem leaf segmentation and 53%, 62.8% and 70.3% in the AP, AP@25, and AP@50 for leaf instance segmentation. This study provides an effective way for characterizing 3D plant architecture, which will become useful for plant breeders to enhance selection processes.
translated by 谷歌翻译
尽管深入的强化学习(DRL)在包括机器人技术在内的许多学科中都很流行,但最先进的DRL算法仍然难以学习长途,多步骤和稀疏奖励任务,例如仅在只有一项任务的情况下堆叠几个块 - 集合奖励信号。为了提高此类任务的学习效率,本文提出了一种称为A^2的DRL探索技术,该技术集成了受人类经验启发的两个组成部分:抽象演示和适应性探索。 A^2首先将复杂的任务分解为子任务,然后提供正确的子任务订单以学习。在训练过程中,该代理商会自适应地探索环境,对良好的子任务的行为更确定性,并且更随机地对不良的子任务子任务。消融和比较实验是对几个网格世界任务和三个机器人操纵任务进行的。我们证明A^2可以帮助流行的DRL算法(DQN,DDPG和SAC)在这些环境中更有效,稳定地学习。
translated by 谷歌翻译
金属有机框架(MOF)是一类模块化的多孔晶体材料,具有巨大的革命性应用,例如储气,分子分离,化学感应,催化和药物输送。剑桥结构数据库(CSD)报告了10,636个合成的MOF晶体,此外还包含CA。114,373个类似MOF的结构。综合数量(加上可能合成的)MOF结构数量庞大,需要研究人员追求计算技术来筛选和分离MOF候选物。在此演示论文中,我们描述了我们在利用知识图方法方面促进MOF预测,发现和综合方面的努力。我们提出了有关(1)从结构化和非结构化来源构建MOF知识图(MOF-KG)的挑战和案例研究,以及(2)利用MOF-KG来发现新知识或缺失知识。
translated by 谷歌翻译
交通流量的技术预测在智能运输系统中起着重要作用。基于图形神经网络和注意机制,大多数先前的作品都利用变压器结构来发现时空依赖性和动态关系。但是,他们尚未彻底考虑时空序列之间的相关信息。在本文中,基于最大信息系数,我们提出了两种详尽的时空表示,空间相关信息(SCORR)和时间相关信息(TCORR)。使用SCORR,我们提出了一个基于相关信息的时空网络(CORRSTN),该网络包括一个动态图神经网络组件,可有效地将相关信息整合到空间结构中,以及一个多头注意力组件,以准确地对动态时间依赖性进行建模。利用TCORR,我们探索了不同周期数据之间的相关模式,以识别最相关的数据,然后设计有效的数据选择方案以进一步增强模型性能。公路交通流量(PEMS07和PEMS08)和地铁人群流(HZME流入和流出)数据集的实验结果表明,Corrstn在预测性能方面表现出了最先进的方法。特别是,在HZME(流出)数据集上,与ASTGNN模型相比,我们的模型在MAE,RMSE和MAPE的指标中分别提高了12.7%,14.4%和27.4%。
translated by 谷歌翻译
处理聚类问题在数据统计数据统计,模式识别和图像处理中很重要。平均换档算法是一种公共无监督算法,广泛用于解决聚类问题。然而,平均移位算法受其巨额计算资源成本的限制。在以前的研究[10]中,我们提出了一种新型GPU加速的更快的平均移位算法,这大大加快了余弦嵌入的聚类问题。在本研究中,我们扩展并改进了以前的算法来处理欧几里德距离度量。不同于传统的基于GPU的平均移位算法,我们的算法采用新颖的种子选择和早期停止方法,这大大提高了计算速度并降低了GPU存储器消耗。在仿真测试中,在处理200k点聚类问题时,与基于最先进的GPU的平均换档算法相比,我们的算法达到了3次加速度,具有优化的GPU存储器消耗。此外,在本研究中,我们实现了一种用于更快的平均移位算法的即插即用模型,可以轻松地部署。 (即插即用型号可用:https://github.com/masqm/faster-mean-shift-euc)
translated by 谷歌翻译
最近,深度神经网络在各种分类和模式识别任务方面取得了出色的预测性能。然而,许多真实的预测问题具有序序变量,并且通过传统的分类损耗(例如多类交叉熵)忽略该订单信息。深神经网络的序数回归方法解决了这一点。一种这样的方法是基于早期二进制标签扩展框架的珊瑚方法,并通过强加重量共享约束来实现其输出层任务之间的等级一致性。然而,虽然早期的实验表明,珊瑚的等级一致性是有益的性能,但重量分享限制可能严重限制深神经网络的表现力。在本文中,我们提出了一种替代方法,用于秩一致的序数回归,其不需要在神经网络的完全连接的输出层中的权重共享约束。我们通过使用条件培训集实现这一级别一致性,通过将链规则应用于条件概率分布来获得无条件等级概率。各种数据集的实验证明了所提出的方法利用序数目标信息的功效,并且没有重量分担限制的情况会提高与珊瑚参考方法相比的性能。
translated by 谷歌翻译